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TOPOLOGIES OF NODAL SETS OF RANDOM BAND LIMITED
FUNCTIONS

PETER SARNAK AND IGOR WIGMAN

ABSTRACT. It is shown that the topologies and nestings of the zero and nodal
sets of random (Gaussian) band limited functions have universal laws of distri-
bution. Qualitative features of the supports of these distributions are determined.
In particular the results apply to random monochromatic waves and to random
real algebraic hyper-surfaces in projective space.

1. INTRODUCTION

Nazarov and Sodin ( [N-S| [Sof]) have developed some powerful general tech-
niques to study the zero (‘“nodal”) sets of functions of several variables coming
from Gaussian ensembles. Specifically they show that the number of connected
components of such nodal sets obey an asymptotic law. In [Sal] we pointed out that
these may be applied to ovals of a random real plane curve, and in [L-LI[ this is
extended to real hypersurfaces in P". In [G-W] the barrier technique from [N-S]]
is used to show that “all topologies™ occur with positive probability in the context
of real sections of high tensor powers of a holomorphic line bundle of positive
curvature, on a real projective manifold.

In this note we apply these techniques to study the laws of distribution of the
topologies of a random band limited function. Let (M, g) be a compact smooth
connected n-dimensional Riemannian manifold. Choose an orthonormal basis
{#51}52, of eigenfunctions of its Laplacian

(1) Adi + t7¢; =0,

O=tg<ti <tg....

Fix o € [0, 1] and denote by Eps,o(T") (T a large parameter) the finite dimensional
Gaussian ensemble of functions on M given by

) f@)y= > coj),
aT<t; <T

where c; are independent Gaussian variables of mean 0 and variance 1. If o = 1,
which is the important case of “monochromatic” random functions, we interpret

@) as
3) fl@)y= > o),

T—n(T)<t;<T
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where 7)(T') — oo with 7', and n(T") = o(T’). The Gaussian ensembles Eny o (T)

are our a-band limited functions, and they do not depend on the choice of the o.n.b.

{¢;}. The aim is to study the nodal sets of a typical f in Enro(T") as T — oo.
Let V(f) denote the nodal set of f, that is

V(f) ={z: fz) =0}

For almost all f’sin €y (T") with T large, V'(f) is a smooth (n — 1)-dimensional

compact manifold. We decompose V' (f) as a disjoint union || ¢ of its con-
ceC(f)

nected components. The set M \ V' ( f) is a disjoint union of connected components

| | w, where each w is a smooth compact n-dimensional manifold with smooth
weQ(f)
boundary. The components w in Q(f) are called the nodal domains of f. The
nesting relations between the ¢’s and w’s are captured by the bipartite connected
graph X (f), whose vertices are the points w € Q(f) and edges e run from w to w’
if w and w’ have a (unique!) common boundary ¢ € C(f) (see Figure . Thus the
edges E(X(f)) of X(f) correspond to C(f).

FIGURE 1. A nodal picture of a spherical harmonic. The blue and
red are positive and negative domains respectively, and the nodal
set is the interface between these.

As mentioned above, Nazarov and Sodin have determined the asymptotic law
for the cardinality |C(f)| of C(f) as T" — oo. There is a positive constant 3, o
depending on n and « (and not on M) such that, with probability tending to 1 as
T — oo,

4) IC(f)| ~ Brn,acn Vol(M)T™; here ¢,, = Vol(S™, round).

We call these constants 3, , the Nazarov-Sodin constants. Except for n = 1 when
the nodal set is a finite set of points and (@) can be established by the Kac-Rice
formula (51,4 = ﬁ -v/1 + a + a?), these numbers are not known explicitly.
In order to study the distribution of the topologies of C(f) and Q(f) and the
graph X (f) we need certain discrete spaces as well as their one-point compactifi-

cations. Let H (n — 1) denote the one-point compactification of the discrete count-
able set of diffeomorphism classes of compact connected manifolds of dimension

—~—

(n—1). Similarly, let B(n) be the one-point compactification of discrete countable
set of diffeomorphism classes of n-dimensional manifolds with boundary, and 7 be
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FIGURE 2. To the right: the nesting tree X (f) corresponding to
a fragment of the nodal picture in Figure |1} to the left, contain-
ing 17 nodal domains (where we neglected some small ones lying
next to the boundary). Figure [I] is essential for deciding which
components merge on the sphere outside of the fragment.

the one-point compactification of the (discrete countable) set of connected rooted
finite graphs (i.e. graphs together with a marked node, referred to as the “root”).

—~—

Note that each ¢ € C(f) and w € Q(f) clearly determine points in H(n — 1) and
B(n), which we denote by #(c) and t(w) respectively.

To each (or at least almost each) edge cin C(f) = E(X(f)) we associate an end
e(c) in T as follows: Removing ¢ from X (f) leaves either two components or one
component. The latter will happen asymptotically very rarely and in this case we
ignore this edge ¢ (or we could make an arbitrary definition for e(c)). Otherwise
the two components are rooted connected graphs and we define the end e(c) to be
smaller (in size) of these two rooted graphs (again, the event that they are of the
same size is very rare and can be ignored). With these spaces and definitions we
are ready to define the key distributions (they are essentially probability measures)

on H(n —1), gEJn) and T by:

1
c(f)
1
(6) ) = a0 e;(f)@
1
(7 Hx(f) = ’C(f)‘ Z 56(0)?
c(f)

where J¢ is a point mass at £. These measures give the distribution of topologies
of nodal sets, nodal domains and ends of nestings for our given f.

Our first result asserts that as 7" — oo and for a typical f in Eps,o(T'), the above
measures converge w-star to universal measures which depend only on n and «.

Let H(n—1) consist of all elements of H(n — 1) which can be embedded in R"~!,

B(n) of those elements of B(n) that can be embedded in R", and 7 the set of all
finite rooted trees.
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Theorem 1.1. There are probability measures [ic n.q» Q0o AN [LX 5 o SUpported
on H(n — 1) U {oo}, B(n) U {oco} and T U {oo} respectively, such that for any
given H € H(fn\—/l) B e E(\/n) and G € T and € > 0,
P{f € EmalT) : max (|pe(py(H) = tenaH)| s 1o (B) = nona(B)|,
|1x(1)(G) = 1xna(G)|) > €} =0,

)

asT — oo.

While the above ensures the existence of a law of distribution for the topologies,
it gives little information about these universal measures. A central issue is the
support of these measures and in particular:

(1) Do any of the pi¢ n.as 40 ,n,0» X n,o charge the point oo, that is, does some
of the topology of V'(f) escape in the limit?

(2) Are the supports of these measures equal to H(n — 1), B(n) and T re-
spectively, i.e. do these measures charge each singleton in these sets, posi-
tively?

Remarks: (i). We expect that the answer to is NO and to is YES (see
below). If the answer to (1)) is no, then these measures capture the full distribution
of the topologies and Theorem 1 can be stated in the stronger form

P{f € Ena(T) : max (D(pe(s)s bema)s Do) boma), D(x 5y hxna)) > €f = 0,
as T" — oo, where the discrepancy is defined by

D(pe(s)s tema) = sup_ ue(y(F) = pepa(F)]
FCH(n—1)
the supremum being over all finite subsets F', and similarly for the other discrep-
ancies.

(ii). The answer to (2) is only problematic in the monochromatic case o = 1
(see Section [2).

(iii). Once (I)) and (2)) are answered the qualitative universal laws for topologies
are understood. To get quantitative information the only approach that we know is
to do Monte-Carlo (numerical) experiments (see below).

Our main Theorems resolve (I)) and (2)) in low dimensions. Forn = 2, H(1) isa
point, namely the circle, and the measure yi¢ ) is trivial. However B(2) consists of
all planar domains w and these are parameterized by their connectivity b(w) € N,
that is, we can identify B(2) and N.

Theorem 1.2. (1) We have

12,0 [{00}] =0
and the support of ng 2.« is all of N, moreover the mean of |1 2.« is at
most 2 (as a measure on N).

(2) The support of j1x 2,o contains all of T (but we don’t know if j1x 2 o ({00}) =
0).

For n = 3, H(2) consists of all orientable compact connected surfaces S, and
these are determined by their genus ¢(S) € G = {0, 1, 2...}, that is, we can
identify H(2) with G.

Theorem 1.3. The support of pc 3.« is all of G, and pc 3 o({oo}) = 0, moreover
the mean of [ic 3, (as a measure on G) is finite.
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Applications: The extreme values of a,, namely 0 and 1 are the most interesting.
The case @ = 1 is the monochromatic random wave (and also corresponds to
random spherical harmonics) and it has been suggested by Berry [Bel] that it models
the individual eigenstates of the quantization of a classically chaotic Hamiltonian.
The examination of the count of nodal domains (for n = 2) in this context was
initiated by [B-G-S]}, and [B-SI|, and the latter suggest some interesting connections
to exactly solvable critical percolation models.

The law 110 2.1 gives the distribution of connectivities of the nodal domains for
monochromatic waves. Barnett’s numerical experiments [Bal] give the following
values for its mass on atoms.

connectivity | 1 2 3 4 5 6 7 8 9
H$ 2,1 906 | .055 | .010 | .006 | .003 | .002 | .001 | .0008 | .0004

The case a = 0 corresponds to the algebro-geometric setting of a random real
projective hypersurface. Let W,, 1 ; be the vector space of real homogeneous poly-
nomials of degree ¢ in n + 1 variables. For f € W,,11+, V(f) is a real projective
hypersurface in P"(R). We equip W), 1, with the “real Fubini-Study” Gaussian
coming from the inner product on W, 1 ; given by

®) (f, g) = / F@)g(@)elo 2y

Rn+1

(the choice of the Euclidian length |z| plays no role [Sall). This ensemble is es-
sentially £y 0(t) with M = (P™(R), o) the projective sphere with its round metric
(see [Sal]). Thus the laws pc o describe the universal distribution of topologies of
arandom real projective hypersurface in P” (w.r.t. the real Fubini-Study Gaussian).

If n = 2 the Nazarov-Sodin constant 33 g is such that the random oval is about
4% Harnack, that is it has about 4% of the maximal number of components that it
can have ( [Nal, [Sa]). The measure i 2o gives the distribution of the connectivi-
ties of the nodal domains of a random oval. Barnett’s Montre-Carlo simulation for
these yields:

connectivity | 1 2 3 4 5 6 7 8 9
H0,2,0 937 | .027 | .009 | .003 | .002 | .002 | .001 | .001 | .0005

The measure pc 3,0 gives the law of distribution of the topologies of a random
real surface in P3(R). It would be very interesting to Monte-Carlo this distribution
and get some quantitative information beyond Theorem [1.3]

Remark 1.4. A P-valued topological invariant F'isamap F' : H(n — 1) — P
(everything discrete). One defines the F' distribution of f € Eyro(T) to be

1
nEG) = e Do OF©
Cl 22,

pr(p) 1s the pushforward of pc(s) to P. Theorem can be proven for pip(r) in
the same way yielding universal laws fif,, o on P U {oo}. Clearly, for any y € P,

IU’F,n,Oc(Y) > ﬂC,n,a(F_l(Y));
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and if the answers to (1) and (2) are as expected, then we have equality in the above,
and /15, o has exact support equal to F'(H (n — 1)).
For example, let

F(c) = Betti(c) = (BD(c), ..., B ()

in P, := (Z>0)*, where n = 2k + 2 or 2k + 1 with k > 0, and 519 (c) is the j-th
Betti number of ¢ (the other Betti numbers are determined from the connectedness
of c and Poincare duality). In the case a = 0 (that is the random projective hyper-
surface) one can show that jigein,0 is a probability measure on P, if n is even, and
on the subset (Z>0)* 1 x (2Z>g) of P, if n is odd. Moreover, each atom in these
sets is charged positively by jigei,n,0 and its total mean (or total Betti number)

k
) YD i | #eetino({y})

yePn \Jj=1

is finite. Thus pigeyi n,0 describes the full law of distribution of the Betti numbers
of a random real algebraic hypersurface in projective space.

1.1. Acknowledgements. We would like to thank Mikhail Sodin for sharing freely
early versions of his work with Fedor Nazarov and in particular for the technical
discussions with one of us (Wigman) in Trondheim 2013. In addition I.W. would
like to thank Yuri Safarov for sharing his expertise on various topics connected with
the proofs. We also thank Alex Barnett for carrying out the numerical experiments
connected with this work and for his figures which we have included.

2. OUTLINE OF PROOFS

2.1. The covariance function for £,(7"). Most probabilistic calculations with
the Gaussian ensemble &, (T") (we fix M) start with the covariance function (also
known as covariance kernel)

(10) Ko(T;2,y) i=Be, [f(@) f()] = > ¢i()d;(y)

aT<\;<T

(with suitable changes if & = 1). The function K is the reproducing kernel for
our a-band limited functions. Note that

/KQ(T;m,x)dV(x) =dim &y (T) := Vol(M)D,(T),
M

where D, (T") is the local dimension. The behaviour of K, as 7" — oo is de-
cisive in the analysis and it can be studied using the wave equation on M x R
and constructing a smooth parametrix for the fundamental solution as is done
in [Lax, Horml], see [L-P-S|] for a recent discussion.

Let

Ko(T;z,y) =

DT Ko(T;2,y),

then uniformly for z,y € M,

. By o(Td(z,y)) + O(T™Y) ifd(z,y)T < 1
(1) Ka(Tiz,g) = Predop) 2 O0T) i dm T <1
o) otherwise
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where d(z,y) is the distance from x to y in M, and for w € R”

(12) B a(w) = Ba(w]]) = |Q1| / e((w,€))de
Qq

and

Qo ={w: a<||w| <1}
Moreover, the derivatives of the left hand side of (IT)) are also approximated by the
corresponding derivatives of the right hand side.

Thus for points y within a neighbourhood of 1/7" of = the covariance is given
by (I2) while if y is further away the correlation is small. This is the source of
the universality of the distribution of topologies, since the quantities we study are
shown to be local in this sense.

Let H,, ., be the infinite dimensional isotropic (invariant under the action of the
group of rigid motions, i.e. translations and rotations) Gaussian ensemble (“field”)
defined on R" as follows:

Flx) =" cjvi(@),
j=1

where c;’s are i.i.d. standard (mean zero unit variance) Gaussian variables, and v,
are an orthonormal basis of L?({,, dv),where dv is the normalized Haar measure.
The covariance function of H, ,, is given by

EH,La[f(m)f@)] = Bpa(z —y).

The typical element in the ensemble H,, o, is C'°°, and the action by translations
on H, . is ergodic by the classical Fomin-Grenander-Maruyama theorem (see
e.g. [Grl]). As in [So] we show that the probability distributions that we are in-
terested in are encoded in this ensemble H,, .

2.2. On the proof of existence of limiting measures (Theorem [I.I). For the
existence of the measures in Theorem we follow the method in [N-S] and
[So] closely. They examine the expectation and fluctuations of the (integer val-
ued) random variable N (f,T") on £,(T") which counts the number of connected
components ¢ of V(f). We examine the refinements of these given as: for S €
H"™ 1 N(f,S,T) is the (integer valued) random variable which counts the num-
ber of such components ¢ which are topologically equivalent to .S; for w € B(n),
N(f,w,T) counts the number of components ¢ whose ‘inside’ is homeomorphic
to w, and for e € T a rooted tree N(f,e,T") counts the number of components
c whose end is e. The fact that our random variables are all dominated pointwise
by N(f,T) allows us for the most part to simply quote the bounds for rare events
developed in [Sol|, and this simplifies our task greatly. The basic existence result
for each of our random variables is the following, which we state for N(f, S, T):
There is a constant ji,, o(S) > 0 such that

. N(/,8,T)
(13) Jim Ke, (7 HTn

~imal®)]| <o

The constant /i, o(S) is determined from the Gaussian H, . as follows: For
f € Hyqoand R > 1let N(f, S, R) be the number of components of V'(f) which
are homeomorphic to S and which lie in B(R) the ball about 0 of radius R. This
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function of f is in L', and after suitable generalizationsﬂ of the sandwich estimates
( [Soll, page 6) for our refined variables one shows that the following limit exists
and yields fi, o (5):

fra(S) = lim — =, [N(f, S, R)].

R—o00 VOI(B(R))
Hence in terms of 1,
fin,a(S)
na(S) =— .
pe.n,a(S) enBn

The proof of (13)) is in two steps. The first is a localization in which one scales
everything by a factor of 7" in 1/T-neighbourhoods of points in M, and reduces
the problem to that of the limit ensemble H,, .. This process, called “coupling”
in [Sol, can be carried out in a similar way for N(f,S,T) (as well as our other
counting variables) after relativizing the various arguments and inequalities. The
second step concerns the study of the random variable N(f, S, R) (and again the
other counts) on H, ,, asymptotically as R — oco. A key point is that this latter
variable is firstly measurable (it is locally constant) and is in L!(H,, ). As in [So]
this allows one to apply the ergodic theorem for the group of translations of R™ to
ensure that the counts in question converge when centred at different points. This
provides the ‘soft’ existence for the limits at hand while providing little further
information. As a “by-product” this approach implies that a typical nodal domain
or a tree end of f lies in a geodesic ball of radius R/T in M for R large (but
fixed); this “semi-locality” is the underlying reason for the ergodic theory to be
instrumental for counting nonlocal quantities.

As was mentioned above, to infer information on f from H,, , one needs to
construct a coupling, that is, a copy of H, o, defined on the same probability space
as f, so that with high probability a random element g of H,, , is merely a small
perturbation of (the scaled version of) f in C'(B(2R)) (that is, both the values and
the partial derivatives of g approximate those of f); this is possible thanks to (LTJ).
Moreover, in this situation, with high probability both f and g are “stable”, i.e. the
set of points where both f and ||V f|| are small is negligible (the same holding for
g). Nazarov and Sodin used the ingenious “nodal trap” idea, showing that each of
the nodal components c of g is bounded between the two hypersurfaces g~!(+e),
to prove that under the stability assumption ¢ corresponds to a unique nodal com-
ponent of f. This allowed them to infer that the nodal count of g is approximating
the nodal count of f (neglecting the unstable regions). We refine their argument by
observing that the topological class of a nodal component inside the “trap” cannot
change while perturbing from g to f, as otherwise, by Morse Theory, one would
have encountered a low valued critical point; this is readily ruled out by the stabil-
ity assumption. The same approach shows that neither the diffeomorphism class of
the corresponding nodal domain nor the local configuration graph can change by
such a perturbation. This completes the outline of the proof of Theorem|[I.1]

2.3. The measures /i 2 o and jic 3, do not charge oo. To establish the claims
Theorems and about the supports of the measures pc, o (respectively
M1 n,as X n,o) ONE Needs to input further topological and analytic arguments.

IThe case of tree ends is the most subtle.
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For part (T) of Theorem 1.2 take M = S? with its round metric. For almost all
f € Emal(T), V(f) is nonsingular and the graph X (f) is a tree (by the Jordan
curve Theorem). Hence

D bw) =2Q(f)| -2,

weQ(f)

and hence the mean (over N) of uq(f) is equal to 2 — ﬁ It follows that the

limit measures fiq 2 o do not charge {oo}, and that their means are at most 2. From
the data in Barnett’s tables (see Section 1) it appears that the means for o = 0 and
a = 1 may well be less than 2. If this is so it reflects a nonlocal feature of “escape
of topology” at this more quantitative level.

The proof of Theorem@]uses the Kac-Rice formula (see [[C-L,A-T])) and some
topology. The expected value of the integral of over M of any local quantity, such
as the curvature x(z) of the surface V' (f) (n = 3), over Exs,o(T") can be computed.
For example, if M = RP?3 with its round Fubini-Study metric, then by Gauss-
Bonnet

Eey oy | >, 200 —g(e)| ~ —7aT?
ceC(f)
(here v, > 0 and for o = 0 it is computed explicitly in [Bu]]). Hence as T" — oo,

Eey oy | D 9(0)| ~ (Yo + 2 VOl(RP?)cyB3,0)T°.
ceC(f)

From this one deduces that /¢ 3 o ({o0}) = 0, and that the mean of y¢ 3 o (over G)
is at most
Yo

2 .
* VOI(RIPB) +C3 63’05

2.4. The measures 1102, and s 3, charge every finite atom. The proof that
the measures fic n o, Q0o and px o charge every topological atom reduces to
producing an f € H, , for which the corresponding V' (f) (respectively Q(f),
X (f)) has the sought atomic configuration (since the ¢’s in a suitably small C*
neighbourhood of f have the same local configuration level and such a neighbour-
hood has positive measure in H, ). For ¥ C R"™ a compact set let

S={Ff: fla)= Z age((z,§)), with ag = 0 for all but finitely many &
£ex

For our purposes it suffices to find a g € ﬁ; (real valued) with the desired
topological atom. If 0 < a < 1 then one can show that for any compact ball B,

(/2;] p is dense in C*(B) (for any k). Hence constructing a function g of the type

that we want is straightforward. However for o = 1, the closure of ;| g in C'(B) is
of infinite codimension. Nevertheless the following much weaker statement holds:

Lemma 2.1. For n > 2 and K C R" a finite set, Q1| = C(K), i.e. there is no
restriction on the values attained by a function in €)1 on a finite set.
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FIGURE 3. A grid, the nodal set of fj.

X
1 f

FIGURE 4. A singularity resolution.

Our proof uses asymptotics of Bessel functions and L* bounds for spherical
harmonics. One can also deduce Lemma [2.1]for K’s which are subsets of Z" (and
this is sufficient for our purposes) from Ax’s “function field Schanuel Theorem”
[Ax]. In fact, one can deduce a much more general result which is useful in this
context: If ¥ is an r-dimensional (r > 1) real algebraic subvariety of R™ which is
not special in the sense of [Pila], and K C Z" is finite, then S/Z\l\ xk = C(K).

To produce an f € Q, (for n = 2) with X (f) having a given end e € T, start
with

fo(x1,x2) = sin(mxq ) sin(7xs),
whose nodal set V'(f) is a grid (see Figure with conic singularities at the points
of Z2. For any finite K C Z? we can choose 9 (z1,x2) in 0 with (k) =€, €
{—1,1} for k € K, where ¢ is any assignment of signs. Set

flx1,22) = fo(z1, x2) + e(z1, 22),

where € is a small positive number. The singularity at k& will resolve in either of the
forms as in Figure ] according to the sign of €. One shows that this gives enough
flexibility by choosing K and ¢, to produce any rooted tree in 7. This completes
the outline of Theorem [1.2] part (2)).

For a proof of Theorem [I.3]one uses the above Lemma in a similar way starting
with the function

fo(x1, e, x3) = sin(mwzy) sin(rze) + sin(rz ) sin(mzs) + sin(rze) sin(rxs).
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FIGURE 5. A fragment of the zero set of
fo(z1, 29, 23) = sinzy sinxg + sin x; sin xg + sin xg sin 3

shown from two different perspectives. It consists of a lattice
arrangement of infinitely many layers each containing boxes ar-
ranged on half of the black cells of an infinite chessboard, diago-
nally connected to the upper and lower layers.

The singularities of V'(fp) are at integral lattice points and are conic (see Figure
5). Perturbing fy near such a point k resolves V(fy) to a 1-sheeted or 2-sheeted
hyperboloid depending on the sign of €;. Again, one shows by examining the
components of R \ V(o) (which consists of infinitely many alternating cubes,
and the complement, which is connected), that perturbing fj by a suitable ey € Q\l
is enough to produce any element of H (2) as a component of V'(f).

FIGURE 6. Nodal line and domains for a random element in

€SJ2704 with o = 1 (left) and o = 0 (right), T' = /80 - 81, pictures
produced by Alex Barnett. The nodal domains are the black and
white connected components, and the nodal line is the interface
between these.
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We end with comments on Remark [T.4] According to [Mil, the total Betti num-

n—1

ber Y (7 of the zero set of a nonsingular real homogeneous polynomial of degree
j=1

t in (zg,x1,...,xy) is at most t". This together with (@) implies the finiteness

assertion (9) which in turn ensures that figeyin,0({oo}) = 0. That the image of
H(n — 1) under Betti is restricted as claimed follows from our ¢’s bounding a
compact n-manifold so that x(c) is even. On the other hand, starting from S"~*
and applying suitable p-surgeries which increase P! by 1 if p + 1 is not in the
middle dimension and by 2 if it is, shows that the image of Betti is as claimed. An
interesting question about the Betti numbers raised in [G-W]| page 4 in the context
of their ensembles, is whether the limits

1

B o e o(T) [7(Vi)], T — oo

exist for each 1 < j < k? If so a natural question is whether these are equal to the
corresponding mean for fipewin,0? These appear to be subtle questions related to
the possible non-locality of these quantities (escape of mass) and it is unclear to us
what to expect.
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